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bstract

The volume changes, which are associated with hydride formation involve large strain energy. In the present work, Finite Element calculations
f the strain energy of hydrides formed at the free surface of a metal matrix is done as function of several variables: the shape of the hydride
recipitate, the elastic anisotropy of the crystals with cubic symmetry, the elastic heterogeneity, elastic–plastic transition and the effect of an oxide
ayer on the surface. The effect of these variables on the kinematics of the elastic strains and on the distribution of the energy between the matrix
nd hydrides are used to interpret the results and to deduce the preferred shapes, those having the lowest energy.

The elastic energy of half-spherical hydrides at the surface is found to be minimal in most of the elastic and elastic–plastic systems considered
due to different reasons). A plate-shaped hydride with broad face parallel to the free surface may become preferred in an elastic matrix if the

ydride is significantly softer than the matrix, or its broad face is parallel to a soft crystallographic plane. The existence of a thick oxide layer
ver the free surface increases the total energy of the system and moderates the dependence of the energy on the shape. As the hydride grows, the
reference of the spherical shape is enhanced. For the case of a plastic matrix covered with an oxide layer, the preferred growth shape changes
rom a sphere to an elongated precipitate perpendicular to the free surface.

2006 Elsevier B.V. All rights reserved.
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. Introduction

The initial stages of gas–solid reactions, e.g., oxidation,
ydrating, etc., frequently involve the nucleation and growth of
he reaction product (as precipitates) at the surface or at the near-
urface region. In many cases, like hydride precipitates to which
e refer in this work, the density of the product is lower than that
f the parent material therefore a volume expansion accompanies
he growth of the precipitates setting up stresses in the hydride
nd around it. These stresses are associated with strain energy,
hich affects the growth of the product particles and gives rise
o interaction with other stress-sources like dislocations [1,2],
xide layers and other hydrides. Thus, the strain energy may
ave a significant effect on the hydrogen–metal reaction.

∗ Corresponding author. Tel.: +972 86472493; fax: +972 86472946.
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An example for this situation was observed by Bloch et al.
3] during hydrogenation of uranium. Multiple hemispherical
ydrides nucleate, sometime preferably along slip lines. Most of
hem cease to grow but a few grow into large precipitates [4–6].
loch et al. [3] suggested that the increase in elastic energy
ccumulated during the growth process causes the interception
f the growth. The growth proceeds only where the oxide layer
hat covers the metal surface breaks.

Elastic effects associated with second phase particles have
een intensively investigated in bulk materials. They can affect
he shape, size and orientation of particles [7]. In extreme
ases, e.g., martensitic transformations, the elastic energy
an retard the transformation or cause internal deformation
n the new phase particles [7,8]. Elastic interaction among

econd-phase particles can induce ordering of the new phase
n bulk materials [e.g., 7] as well as on free surfaces [e.g.,
]. Since the role of the elastic energy in the evolution of the
icrostructure of solid materials was recognized, a special
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ranch was developed in solid mechanics to study these
henomena.

The first attempt to calculate the elastic energy of a precipi-
ate by continuum approach was published by Nabarro [10]. He
as able to solve the elastic field under the assumption that the
recipitate behaves like a “fluid in a cavity”, that is hydrostati-
ally stressed. This resembles an incoherent precipitate, which
as broken bonds with the matrix.

The problem was extended by several authors to coherent
recipitates of specific shapes, for which continuity of the dis-
lacements and tractions across the precipitate–matrix interface
as assumed [see refs. in 11] until Eshelby [12] suggested a solu-

ion to the elastic fields associated with a coherent “inclusion”
ith an arbitrary shape and misfit (transformation) strains. The

estrictions of his solution are to infinite, isotropic and homoge-
eous (equal elastic constants of the matrix and the particle)
ystems. The solution was obtained by integration of Green
unctions. Asaro and Barnett [13], applied Green functions
or anisotropic materials. An alternative approach to solve the
omogenous, anisotropic inclusion problem in infinite matrix
as suggested by Mura [14] and Khachaturyan [7]. They used

he Fourier transform to solve the equilibrium equations.
The restriction to infinite matrix was removed by several

uthors, who solved problems of precipitates near a free sur-
ace. They are interesting in the context of reactions of solids
ith gases and of nanostructures such as “quantum wires” and

quantum dots”. Four approaches have been advised to fulfill
he free surface boundary conditions in homogenous isotropic

aterials by applying image forces:
(a) Integration of the Green function for half-space [15–17].
b) Expressing the solution as Fourier transform [18–20].

(c) Summation of elementary solutions obtained by Fourier
method. It was applied for cylindrical and rectangular
“wires” [21].

d) Application of the Hankel transform and superposition [22].
ecently a Green function for anisotropic half-space was devised

23].
It is believed that the shape of precipitates is determined by

he tendency of the system to follow a path of lowest energy.
his question was thoroughly discussed for precipitates in infi-
ite matrix since the pioneering work of Nabarro. In isotropic
omogenous systems the energy per unit volume does not vary
ith the shape if the misfitting strains are pure dilatational

10–12]. Laszlo [24] showed that in heterogeneous, isotropic
ystem a plate-shaped particle is associated with the minimum
lastic energy if its shear modulus is smaller than that of the
atrix. Otherwise a spherical particle is the favored shape. Lee

t al. [25] and Shneck et al. [26] generalized this criterion for
ubic anisotropy. They found again that either a plate-shape (par-
llel to the {1 0 0} or the {1 1 1} plane) or a sphere-shape are
ssociated with minimum elastic energy. Later Suh and Park [27]
ound that needles might also have minimum energy at certain
onditions. They proposed the use of stability diagrams to map

he range of parameters where each precipitate shape is stable.

For more general transformation strains there is a controversy.
hile Khachturyan [7] claimed that a plate-shape is always the

hape of minimum energy in a homogenous system, Roitburd

w
a
σ
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28] suggested stability maps containing different shapes for dif-
erent tetragonal misfit. Dahmen and Westmacott [29] showed
hat observed precipitates grow parallel to invariant lines or
nvariant planes when the transformation strains contain such
eatures.

Systematic investigation of the variation of the elastic energy
ith the shape of precipitates near a free surface is lacking.
omogeneous systems can be solved analytically [15–22] but

nalytic solutions for inhomogeneous and anisotropic problems
ear a free surface become intractable. Numerical methods, in
articular the Finite Element Method (FEM) enable the solu-
ion of such mechanical problems with complicated material
ehavior and boundary conditions. The FEM is applied here
o find the strain energy of precipitates with pure dilatational
ransformation strains, growing near the free surface of an infi-
ite half-space. Some experimentally important situations are
odeled, including analysis of the effect of anisotropy, of het-

rogeneity of the elastic constants and of an oxide layer covering
he surface. The solutions are found for a representative series of
alf-ellipsoidal particles, from which the preferred shapes asso-
iated with the minimum elastic energy are determined. The
isplacement and stress fields given rise by the precipitate are
tudied to interpret the results.

The material behavior is first assumed to be linear elastic.
any phase transformations are associated with large trans-

ormation strains. In particular, hydride formation may be
ssociated with misfit strains of the order of 10%. Therefore, the
alculation where repeated for hyperelastic material with kine-
atics taking account of the large strains. Real metals undergo

lastic yielding under large stresses. This discontinuous change
n the constitutive behavior of the material that is studied in the
ast part of the work. Another feature of practical importance is
he occurrence of oxide layer on the metal surface. The effect
f the stiff oxide layer on the preferred shape of the hydride is
alculated for elastic and elastic–plastic materials.

. Method and modeling

The strain energy of coherently bonded hydrides at a free surface of a solid
as calculated as function of their shape. The calculations were performed by the
EM applying the MSC. NASTRAN code. A spherical segment was modeled

aking in consideration the axial symmetry of the problem (10◦ for isotropic
aterial containing 1575 elements and 90◦ for cubic materials containing 14175

lements, see Fig. 4a). The hydrides are assumed to have the shape of half-
llipsoids with radii a = b parallel to the x- and y-directions on the free surface
nd c-axis parallel to the z-direction normal to the free surface. For anisotropic
ystems, the crystallographic axes of the matrix and precipitate were assumed
arallel to each other. The shape varied parametrically from a flat ellipsoid to
n elongate one with principle axes along x,y,z-directions. The dimensions of
he hydride varied between 5.5 and 90 times smaller than the matrix radii in the

odel. Pure dilatational misfit (transformation) strains are assumed (εT
ij = ε0δij),

epresented by thermal strains in the hydride.
The elastic energy (W) was found in the framework of linear elasticity by

alculating the sum [12]:

= 1
∫

σijε
c dV + 1

∫
σij(εc − εT ) dV (1)
2
Vm

ij 2
Vp

ij ij

here Vm and Vp are the volumes of the matrix and the hydride respectively, εc
ij

re the constraint strains measured relative to the initial state of the hydride and

ij are the elastic stresses.
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Table 1
The elastic modulii of the materials used for the calculations

M1 M2 Pd [32] M3 MO

C11 (GPa) 66.9 57.2 223.28 83 141.3
C12 (GPa) 23.4 28 173.12 21 49.4
C44 (GPa) 21.8 29.2 71.25 15.5 45.9
A 1 2 2.84 0.5 1

Metal σuts (MPa) σyp (MPa) εl (%) εV hydride (%) εL hydride (%) Bhydride (GPa)

G

M 11–C1
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1 resembles polycrystalline Gd [30]. MO resembles Gd2O3 [31]. A = 2C44/(C
trains respectively.

The reported elastic energies are normalized to a unit transformation strain
0 and a unit volume of the precipitate. They were compared to results for
recipitates in an infinite matrix obtained semi-analytically by the Fourier trans-
ormation method [14].

The elastic constants used for each specific model system are listed in Table 1.
hey are based on the properties of polycrystalline gadolinium (M1). Two sets of
onstants of hypothetic cubic materials M2 and M3 where chosen with different
nisotropy. Their elastic constants were determined such that the elastic energies
ssociated with spherical precipitates formed in infinite homogenous materials

1, M2 and M3 are all equal (Fig. 3a). The column Pd contains the elastic
onstants of palladium that were used in some calculations.

Non-linear material behavior was described by two models:
(a) Neohookean hyperplasic model with kinematics of large displacements and

large strains. The model constants D and A10 were calculated from the elastic
constants B (bulk modulus) and μ (shear modulus) by 2D1 = B; 2A10 = μ

[35].
b) Elasto-plastic materials obeying the Von-Mises yield criterion with linear

hardening rate of (σuts – σyp)/εl. When the matrix yielded, the plastic work
was calculated by:

m =
∫

Vm

σijε
pl

ij dV. (2)

. Results

.1. Behavior in an infinite homogenous material

The elastic energy accumulated in the hydride–matrix system
s maximal if the hydride is formed in an infinitely rigid matrix.
he energy of such an unrelaxed hydride is:

max = 3

2
B(ε0)

2
Vp (3)

here B is the bulk elastic modulus of the hydride and Vp the
olume of the hydride [12]. In actual matrices, the precipitates
re allowed to relax until equilibrium is attained. At equilib-
ium, the stresses that remain in the precipitate are balanced by
he stresses set up in the matrix and at the same time, the total
lastic energy in the material decreases to the minimum. Eshelby
12] has shown that the elastic energy associated with a homo-
eneous, isotropic, coherent precipitate in an infinite matrix is
ndependent of the shape of the precipitate. The partition of the
nergy between the matrix and the precipitate depends, however,

n the precipitate shape. This partition will be discussed for the
hapes of plate (Fig. 1a), sphere (Fig. 1b) and a needle-shaped
ydride (Fig. 1c), in the case of pure dilation transformation
train.

n
c
t
w

20 [34] 6 80 [33]

2) is the parameter of anisotropy. εV and εL are the volumetric and linear misfit

Figs. 1b–d contain three maps of the displacements associ-
ted with three ellipsoidal hydrides of different shapes embedded
n an infinite matrix. The strains are uniform in each hydride as
rst found by Eshelby [12]. Fig. 1a and b show two plate-shaped
ydrides with pure dilatational transformation strains. The out-
tanding feature of Fig. 1b is the large difference between the
ide dimension and the narrow one. The plate is constrained to

he matrix lattice in its broad face (along x-axis in the illustration)
nd is relaxed along the thickness direction (z-axis). In Fig. 1a,
hypothetical hydride is shown that is less constrained in the

road face. Considerable displacements accumulate along the
road face of the plate, setting up large and long-range strains in
he matrix, due to the continuity of the displacements between
he matrix and the hydride. Hence, in the real dilating hydride
Fig. 1b), minimization of the strain energy of the coherent sys-
em is obtained by keeping the expansion in the broad face
maller, as the plate grows wider. Thus, high two-dimensional
ompressive stresses prevail in the broad plane of the plate. On
he other hand, Fig. 1b shows large expansion of the hydride
n its narrow dimension. The magnitude of the strain approxi-

ates the sum of the transformation strain in the z-direction, εT
zz,

nd the Poisson’s expansion −υ(εxx + εyy) that ensues from the
igh compression in the two lateral directions. The figure shows
hat since this large expansion is allowed only in the narrow
imension of the plate, the strains, which are enforced into the
atrix are of short range. In summary, when the hydride is a very

hin plate, the large part of the elastic energy accumulates in a
wo dimensional hydrostatic stress field within the plate. Only a
mall portion of the strains and elastic energy are transferred to
he matrix.

The anisotropy of the stress fields decreases when the aspect
atio of the precipitate, β = a/c, approaches unity. The precipi-
ate will be able to expand more in its wide dimensions, but will
xpand less in the narrow dimension. Hence, the expansion of
spherical precipitate (Fig. 1c) is uniform in all directions. A

phere is a compact, rigid shape and it enforces high strains
n the matrix, therefore a large part of the elastic energy is
ransferred to the matrix.

When the aspect ratio of the precipitate continues to increase,
he c-axis becomes larger then the a- and b-axes, describing a

eedle-shaped ellipsoid (Fig. 1d). As the c-axis increases the
oherency constraints along the long z-axis increases, therefore
he stress σzz in the hydride increases (Fig. 2a). Concurrently
ith the relative shortening of the a- and b-axes, the stresses
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Fig. 1. Maps of displacements associated with three shapes of hydrides formed in an infinite isotropic matrix. The deformation is visualized by the displacement of
a cubic grid of lines, which was inscribed in the material prior to the formation of the hydrides. Only the x–z plane of the grid is drawn. The transformation strains
are εT

ij = 0.5δij , exaggerated in purpose to induce noticeable strains. The boundaries between the hydrides and the matrices are designated by a heavy line. The
shapes of the hydrides are ellipsoidal with radii a = b �= c and principle axes parallel to the grid lines and the coordinates x,y,z. (a and b) A disk shaped hydride with
c ). (d)
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/a = 0.2 and broad face parallel to the x–y plane. (c) A spherical hydride (c/a = 1
ypothetical hydride that expands laterally more than the real equilibrium state
emi-analytic Fourier method.

elax along x- and y-directions (Fig. 2b). Hence, the long axes are
lways more constrained and highly stressed, whereas the short
xes are less constrained and therefore less stressed. Comparing
he strains along the short axes of a plate-shape hydride to those
n a needle-shaped one, shows that the plate is more relaxed
Figs. 1b and d). Figs. 2a and b indeed show that σzz in the
late is lower than σxx in the needle-shaped hydride having a
eciprocal aspect ratio. The sum of the elastic energies in the
ydride and in the matrix in infinite isotropic and homogenous
ystems is shown by curve 1 in Fig. 3a to be independent of the
recipitate shape.

In elastically heterogeneous systems, the total energy
epends on the shape of the hydride. Given that the hydride
s softer than the matrix, the minimal energy resides with the
ydride shape for which the major part of the elastic energy
s accumulated in the hydride. This is the situation when the
ydride is plate-shaped (curve 5 in Fig. 3a). On the other hand,
f the matrix is softer than the hydride, the preferred shape will

e spherical since in this case the majority of the energy resides
n the matrix (curve 4).

The total energy depends on the shape also when the materials
re anisotropic. In materials with cubic symmetry and A > 1 the

h
f
g
c

A needle-shaped hydride with c/a = 5 and long axis parallel to the z-axis. (a) A
n in (b). Homogenous elastic constants of M1 are assumed. Calculated by the

lanes {1 0 0} are elastically soft. Thus, the energy is smallest
n a system containing a plate-shaped precipitate with its broad
ace parallel to one of the {1 0 0} planes (curve 2 in Fig. 3a).

hen A < 1 the planes {1 0 0} are hard and the energy of such
late-shaped hydrides is high (curve 3 in Fig. 3a). In summery,
he elastic energy in the case of infinite matrix creates preference
nly to the shapes of a plate or a sphere (for further details see
ef. [26]).

.2. Mechanical behavior in a half-space

.2.1. State of stress in a homogenous system
Figs. 4b–d contains three maps of the displacements associ-

ted with three of the modeled half-ellipsoidal hydrides at the
ree surface of a matrix. Fig. 5 compares the stress profiles in
n infinite matrix to those in a half infinite matrix. The cre-
tion of the free surface enforces the σzz components of the
tress to vanish at the surface. This allows the relaxation of the

ydride near a free surface in the direction normal to the sur-
ace. In a needle-shaped hydride, the compressiveσzz component
radually increases along the long z-axis due to the increasing
onstraints far from the free surface, converging to the stress
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Fig. 2. The stresses at the center of elipsoidal hydrides in a homogenous matrix
M1 at the free surface (FS) calculated by the FEM and in an infinite space (IS)
calculated by the semi-analytic Fourier method, as functions of the aspect ratio
of the elipsoid. (a) σ stress. (b) σ and σ stresses for unit transformation
s
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t
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h
nuity of the radial stress required by the boundary conditions. As
in the case of a plate-shaped hydride, the stresses decrease with
decreasing elastic stiffness of the hydrides. The needle-shaped
precipitate benefits a little from the proximity of the free surface

Fig. 3. Summary of the calculations of the total elastic energy (in an elipsoidal
hydride and the matrix) of several systems as function of the aspect ratio of
the hydride and the type of material. The energy is normalized by the volume
of the hydride and the square of the transformation strain (ε0)2. (a) Infinite
zz xx yy

train. From symmetry the difference between σxx and σyy should vanish. Both
tresses are shown as an estimate of the computational error.

n an infinite matrix (Fig. 5a). Along the normalized z-axis of
ydrides with smaller aspect ratio σzz rises more moderately. In
articular, the maximum σzz in a half-spherical hydride is con-
iderably lower near a free surface, relative to its value in an
nfinite matrix.

Figs. 5b–d illustrate the lateral stress component σxx along
he direction x for the three shapes of hydrides in a half-infinite
pace. The plate-shaped hydride is exposed to the free surface
t its broad face, but its opposite face is still coherently bounded
o the underlying matrix (Fig. 4b). To avoid long-range strains
n the matrix, the thin plate is rigidly constrained in the lateral
irections like the plate in an infinite matrix. Fig. 5b shows that

he affect of the free surface on the lateral stress in a plate-
haped hydride is small. Fig. 5b shows also the stresses in
late-shaped precipitates with different stiffnesses. The strain
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n the plane of the plate remains approximately (−ε0) in all the
ases, thus, the σxx stress is directly proportional to the elas-
ic constants of the precipitate. A spherical hydride is a rigid
hape. The proximity to the surface allows it to release much
f its internal stresses (Fig. 4c). Fig. 5c compares the lateral
tresses in a spherical hydride embedded in an infinite matrix to
he half-spherical hydride near a free surface. Despite the small

agnitude of the stress at the center of the hydride, σxx rises
ear the hydride–matrix interface. The relaxation of the hydride
gainst its periphery compresses the surrounding matrix and cre-
tes large compressive stresses in the matrix. The σxx in the
ydride rises near the hydride–matrix interface due to the conti-
ystem (IS), (b) near a free surface (FS). Homogenuous systems curves are: (1)

1 (A = 1), (2) M2 (A = 2), (3) M3 (A = 0.5) and Pd (A = 2.84). Hetrogenuous
ystems with a common matrix made of material M1 and different precipitates
re: (4) Cpre = 2Cmat, (5) Cpre = 0.4Cmat, (6) Cpre = 0.05Cmat.
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Fig. 4. The FEM model for the calculation of the energy of hydride precipitated
near a free surface is a sector of the real system (a). The deformation is visualized
by the displacement of the grid in the x–z plane. The initial grid is not cubic
and uniform as the grid used to draw Fig. 1. The elements are refined along
the matrix–hydride interface that is emphasized by a heavy line in (b–d). (b)
A
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m
proximity of a free surface allows the largest relaxation in the
case of a half-spherical hydride since as shown in Fig. 1c for
infinite material and in Fig. 4c for a half-space, a spherical pre-
cipitate transfers most of its elastic energy to the surroundings.

Fig. 5. Stress distribution as a function of the hydride shape, elastic heterogene-
ity and proximity of a free surface. (a) Profiles of the stress σzz along the z-axis
of symmetry of a plate, sphere and a needle-shaped hydrides, normal to the free
surface (FS) and in an infinite space (IS). (b–d) Profiles of the stress σxx along
disk-shaped (β ∼= c/a ∼= 5), (c) nearly a sphere (β ∼= 0.8) and (d) a needle-
haped hydride (β ∼= 0.2). The transformation strains are exaggerated in purpose
o illustrate the different kinematics.

ince only its narrow section is exposed to the surface (Fig. 4d).
he σxx in needle-shaped hydrides exhibit behavior similar to the
ther shapes near the free surface (Fig. 5d). However, an interest-
ng anomalous dependence on the elastic constants is exhibited
y the relatively hard hydride: σxx decreases in absolute value
ore than that of the softer hydride. This may be explained as a
esult of the lower compressibility of the hard hydride. A hard
eedle-shaped hydride is spooled-out of the matrix as indicated
y Fig. 4d, allowing a larger relaxation of the lateral compressive
tresses on the free surface.
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.2.2. Elastic energy in a homogenous system
When a half of the matrix is removed to create a half-space,

uch energy is released by relaxation at the free surface. The
he x-axis parallel to the free surface. The plots compare the stresses in an infi-
ite space (IS) to those associated with a free surface (FS) for several stiffness
atios: (b) plate-shaped hydride, (c) hemisperical hydride and (d) needle-shaped
ydride. All the matrices in this figure are M1. All stresses are reported per unit
ransformation strain.
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ig. 6. The elastic energy as a function of the shape of the elipsoidal hydride
he volume of the hydride and the square of the transformation strain (ε0)2. Ela
b) and A = 0.5 (M3) (c). The top line in each figure is the total elastic energy i
esiding in the hydride (shaded by light gray—Epre). The difference between th

he needle and the plate do not benefit much from the proximity
f the free surface due to the kinematic constraints imposed on
ach of them along their wide dimensions. Results of energy
alculations are presented in Figs. 3b and 6b as the total elastic
nergy associated with a unit volume of hydride per unit transfor-
ation strain. The results show a considerable reduction of the

otal energy in the case of spherical hydrides and a small decrease
f the total energy in the cases of needle and plate hydrides, when
ompared with the situation of an infinite matrix. Accordingly,
he preferred shape of a coherent hydride close to the free surface
n an elastically homogenous system is a half sphere. Moller et
l. [36] also found that a half-spherical precipitate near a free
urface is associated with minimum elastic energy.

.2.3. Homogeneous, anisotropic material
We consider a material having cubic symmetry with parallel
rystallographic and specimen axes, namely the crystallographic
xis [0 0 1] being parallel to the normal to the free surface, z and
arallel crystallographic axes of the matrix and hydride. When
= 2C44/(C11–C12) > 1, the material is soft along the 〈1 0 0〉 axes

T
e
p
h

free surface for different degrees of anisotropy. The energy is normalized by
omogeneity is assumed. The elastic anisotropy is A = 2.84 (Pd) (a), A = 1 (M1)
system (hydride and the matrix—Etot). The lower lines represent the energies
s (shaded by gray) is the energy in the metal matrix.

C11 is minimal) and it is hardest along the 〈1 1 1〉 axes (C11 is
aximal). Along the 〈1 1 0〉 axes C11 obtains an intermediate

alue. Thus the (0 0 1) planes are the softest planes in the crystal.
half-spherical hydride contains all the crystallographic axes

niformly. As the hydride becomes oblate the elastic strains in its
road face increase. This is a kinematic effect that is not sensitive
o the magnitude of the elastic constants. When the broad face is
(1 0 0) plane that contains the softest crystallographic axes, the
trains imposed in the plane cause small stresses and therefore
he elastic energy decreases. Thus the minimum of the total
nergy moves slightly toward the aspect ratio of 0.8 for A = 2 and
.84 (Figs. 3b and 6a). This reflects the compromise between the
inematic advantage of the sphere and the advantage of the soft
1 0 0) plane due to the elastic anisotropy.

Consider now a material with A < 1 and the broad face of
plate-shaped precipitate that is parallel to the (0 0 1) plane.

his plane contains two 〈1 0 0〉 directions that are now the hard-
st directions, giving rise to an increase of the energy of a
late-shaped precipitate. Therefore, the energy of the spherical
ydride creates deeper minimum (Figs. 3b and 6c).
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Fig. 7. The elastic energy as a function of the aspect ratio of a precipitate at the free surface in hetrogenous systems. Normalized by the volume of the hydride and
the squar of the transformation strain (ε0)2. Elastic isotropy is assumed. The matrix is M1. The line and shading conventions are as in Fig. 6. (a) The stiffness of the
hydride is 5% that of the matrix. (b) The stiffness of the hydride is 40% that of the matrix. (c) The stiffness of the hydride is twice that of the matrix. Superimposed
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n part (c) are three curves describing the total elastic energy of metal–hydride s
hickness h to the c-axis of the hydride is kept constant along each of the curves
nd the volume of the hydride.

.2.4. Heterogeneous system
Real systems are elastically heterogeneous, namely, the elas-

ic constants of the matrix and the hydride are different. This
an alter the preferred morphologies. Only limited data exists
egarding the elastic constants of hydrides. Among then the elas-
ic constants of PdH0.66 were exactly measured, and found to
e smaller by a factor of 0.9 than those of Pd [32]. Regarding
ther hydrides, e.g., LaAlxNi5−x, the ratio of Debye tempera-
ures of the intermetallic compound and its hydride was used
o estimate the ratio of elastic constants [37]. It was estimated
hat hydrides are softer than the respective metals by a factor of
.4–0.7. Recently, the bulk modulus of GdH2 was measured and
ound to be larger than that of the metal by a factor of 2 [33].
herefore, we study two cases: one of a soft hydride relative
o the matrix and a second with a hydride that is hard relative
o the matrix, with all elastic constants of the hydride being

ultiples of the respective constants of the matrix by the same
actor.

r
h
e
b

s covered with an oxide layer. The oxide is MO (in Table 1). The ratio of oxide
implies a constant ratio between the volume of the oxide covering the hydrides

A soft hydride contains less elastic energy than a hard one
ith similar misfit strain, according to Eq. (3). Therefore, the

otal unrelaxed energy of a system that contains a soft hydride
s small relative to a homogenous system, as can be seen for all
hapes in Figs. 6b and 7. Among the precipitate shapes, those
hat impose large strains in the hard matrix, give rise to large
nergy in the matrix, and therefore large energy of the whole
ystem. This is the case for the spherical and the needle-shaped
ydrides. Therefore, the shape associated with minimum elastic
nergy shifts slightly from the shape of a sphere toward the
hape of a plate. It is interesting to determine at which degree
f elastic heterogeneity the minimum energy will shift from the
pherical shape to a plate-shape. This will reflect the compromise
etween two mechanisms of saving energy: the one is due to

elaxation at the free surface and the other due to softening of the
ydride. Fig. 7a and b show that for C

pre
ij = 0.4Cmat

ij , the elastic
nergy associated with the plate-shape is significantly reduced
ut only below C

pre
ij = 0.05Cmat

ij the plate-shape becomes the
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hape associated with minimum energy. This 20-fold reduction
f the elastic constants is indeed unrealistic, therefore equiaxed
ydrides are expected to be observed experimentally.

When the hydride is hard (Fig. 7c), the total energy increases
elative to a homogenous system. The minimum of the total
nergy remains with the spherical hydride, only the fraction of
he energy in the hydride decreases since it is less constrained. It
s interesting to note that also the needle-shaped hydride contains

reduced portion of the energy relative to the matrix. This is
ttributed to the matrix being strained in all the radial directions
n the x–y plane.

.2.5. Oxidized surface, homogenous system
The surfaces of real materials are often oxidized. Addition of

stiff oxide layer on the free surface retards the strain relaxation
f the hydride and gives rise to an increase of the total elastic
nergy of the system. The increase of energy grows with increas-
ng the thickness of the oxide layer. It is most significant when the
ydride is spherical, which is easily explained in the framework
eveloped above. This reaction moderates the dependence of the
nergy on the hydride shape (Fig. 7c). Hence, the preference of
spherical shape is less pronounced for the hydrides that are

maller relative to the oxide thickness. However, as the hydride
rows, for a given oxide thickness, the contribution of the oxide
o the total energy is diminishing and again the spherical shape
s preferred.

.2.6. Hyperelastic material behavior
The total strain energy in isotropic and homogenous

ydride–matrix is calculated in neohookean hyperelastic model
ith kinematics of large displacements and large strains. The
isfit strains were taken as 6% (resembling the formation of
dH2 [34]) and 20% (resembling the formation of UH3 [38]).
he results in Table 2 show that the effect of the large displace-
ents on the total strain energy is small and cannot cause a

hange in the preferred shapes.

.2.7. Half-space elastic–plastic matrix—unoxidized surface
Often the stress generated by the precipitate exceeds the

ield stress of the matrix. Plastic deformation significantly
lters the strain energy. The total strain energy defined as the
um of elastic energy and plastic work was calculated for
n isotropic elastic–plastic half-space embedding an elastic

ydride precipitate.

It is found that the total strain energy decreased by more
han one order of magnitude relative to elastic systems, out of
hich the elastic energy residing in the precipitate decreased by

s
b
i
c

able 2
he total strain energy of isotropic and homogenous hydride–matrix systems for th
alues

ydride shape Linear misfit—6%

Linear MJ/m3 Non-linear MJ/m3 Differenc

late (β = 0.06) 236 238 0.8
phere (β = 0.8) 151 146 −3.3
eedle (β = l 6.3) 243 240 −1.2
he elastic–plastic metal, elastic hydride and in the elastic oxide layer. The ratio
f oxide thickness h to the c-axis of the hydride is h/c = 0.8. Note the changes
n scales.

ore than two orders of magnitude. The decrease in the strain
nergy is less for the case of plate-shaped precipitates and is
articularly large for the case of the spherical precipitate; hence,
he minimum in the energy associated with a spherical shaped
article is now very profound (Fig. 8). It is also shown in Fig. 8
hat the strain energy is determined by the plastic work on the

atrix while the remaining elastic energy in the precipitate is
egligible.

For the plate-shaped precipitate, one can compare two pos-

ibilities as in Section 3.1: (a) the precipitate is relaxed in its
road face (Fig. 1a). (b) The hydride is constrained nearly to
ts original dimensions in its broad face (Fig. 1b). In the second
ase, most of the energy in the system will reside in the precipi-

ree hydride shapes, calculated by non-linear and linear models for two misfit

Linear misfit—20%

e (%) Linear MJ/m3 Non-linear MJ/m3 Difference (%)

8670 8940 3.1
5640 5110 −9.4
8910 8570 −3.8
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ate as was preferred in the elastic matrix. In the first possibility,
ong-range strains will be set up in the matrix. Now, since the

atrix is plastic, the strain caused in it will set up relatively small
tresses and therefore be associated with relatively small work.
ndeed Fig. 8 shows that the strain energy in the plate-shaped
recipitate is very low and the work performed on the matrix is
uch higher, opposite to the distribution of energy in the elastic

ystems.
A spherical precipitate is a compact shape that transfers much

nergy to the surrounding matrix in the elastic systems. An elas-
ic precipitate in a plastic matrix is relaxed to a larger extend.
et the plastic work done on the matrix by the spherical hydride

s very small compared with a plate-shaped precipitate. This is
imply due to the plate being much wider than the sphere, giv-
ng rise to much longer range coherency strains in the matrix
Fig. 1a). Thus, the spherical shape is again the preferred shape.

.2.8. Half-space elastic–plastic matrix—oxidized surface
An elastic oxide layer adhering to a half-space with

lastic–plastic matrix and elastic hydride precipitate, hinders
he strain relaxation of the precipitate and thus gives rise to an
ncrease of the strain energy in all the calculated cases (Fig. 8).
he smallest effect was seen on the needle-shaped precipitate,
overed by the oxide layer only at its top narrow section. There-
ore, the energy becomes minimal for precipitates tending to
dopt a needle-shape, perpendicular to the free surface. Increase
f the strain energy as a result of the existence of an oxide layer
s noticeable in particular for the plate-shaped hydride, because
he oxide restricts the strain relaxation in the direction perpen-
icular to the plate. Stress concentration in the oxide layer that is
oticeable in the edges of the hydrides is likely to cause cracks in
he oxide (Fig. 5c). This phenomenon may be important during
he growth of hydrides [3–6] and it deserves further study.

. Conclusions

.1. Linear elastic regime

The shapes of precipitates at a free surface that are associ-
ted with minimum elastic energy were determined at various
ituations. They were interpreted from consideration of the kine-
atics of the deformation and the resulting distribution of energy

etween the hydride and the matrix.
(a) The elastic energy of half-spherical hydrides at the free sur-

face is minimal practically in all the systems considered.
Exceptions from this rule are hydrides that are significantly
soft relative to the matrix at the plane parallel to the free sur-
face, where plate-shaped precipitates are preferred. Since
the discussed energies are normalized by the volumes of
the precipitate, the shapes associated with the minima of
the elastic energy will not change during the growth of the
precipitate.

b) Existence of an oxide layer over the free surface causes an

increase of the total energy of the system, with the spheri-
cal shape inducing the most significant increase in energy.
Hence, when the hydride size is small relative to the oxide
thickness, the elastic energy is almost indifferent to the

[
[
[
[
[

d Compounds 452 (2008) 325–335

shape of the hydride. However as the hydride grows the con-
tribution of the oxide to the total energy is diminished and
the preference of the spherical shape becomes significant.

.2. Non-linear elastic regime
Taking into account the large displacements associated with

he formation of hydrides it is found that their effect on the total
train energy is minor and the same preferred shapes obtained
or the linear regime are expected.

.3. Plastic regime
(a) Plastic yielding of the half-space while the hydride remains

elastic, gives rise to a significant decrease of the total strain
energy. This decrease in the strain energy is the largest for
a spherical precipitate.

b) Existence of an oxide layer over the free surface causes
the preferred shape to change form a sphere to a needle
perpendicular to the free surface.
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